МЕТОДЫ МОНИТОРИНГА УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ СТУДЕНТОВ С ПОМОЩЬЮ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

МЕТОДЫ МОНИТОРИНГА УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ СТУДЕНТОВ С ПОМОЩЬЮ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

Авторы

  • Н.С. Маматов Ташкентский институт инженеров ирригации и механизации сельского хозяйства национального исследовательского университета
  • С.Р. Иброхимов Наманганский государственный университет
  • А.Н. Самиджонов Ташкентский институт инженеров ирригации и механизации сельского хозяйства национального исследовательского университета

Ключевые слова:

Искусственный интеллект, дерево решений, нейронная сеть, байесовский метод, k- ближайшие соседи, машина опорных векторов.Искусственный интеллект, дерево решений, нейронная сеть, байесовский метод, k- ближайшие соседи, машина опорных векторов.

Аннотация

К этому времени человечество достигло и продолжает добиваться великих научных и практических достижений. Одним из них является искусственный интеллект (ИИ), который широко используется во многих сферах человеческой деятельности.  В настоящее время СИ бурно развивается во многих сферах, и система высшего образования не является исключением. Данная статья посвящена анализу факторов, влияющих на прогнозирование учебной деятельности студента, и используемых на практике методов ее контроля и дальнейшего повышения потенциала студента.

Библиографические ссылки

Alyahyan, E., Düştegör, D. Predicting academic success in higher education: literature review and best practices. Int J Educ Technol High Educ 17, 3 (2020). https://doi.org/10.1186/s41239-020-0177-7

Sotiris Kotsiantis, Christos Pierrakeas, and Panagiotis Pintelas, "Predicting students performance in distance learning using machine learning techniques," Applied Artificial Intelligence, vol. 18, no. 5, pp. 411--426, 2010.

Hoti, A. H., Zenuni, X., Hamiti, M., & Ajdari, J. (2023, June). Student Performance Prediction Using AI and ML: State of the Art. In 2023 12th Mediterranean Conference on Embedded Computing (MECO) (pp. 1-6). IEEE.

Amirah Mohamed Shahiria, Wahidah Husaina, and Nur’aini Abdul Rashid, "A Review on Predicting Student’s Performance using Data Mining Techniques," Procedia Computer Science, vol. 72, pp. 414-- 422, 2015.

Farshid Marbouti, Heidi A. Diefes-Dux, and Krishna Madhavan, "Models for early prediction of at-risk students in a course using standards-based grading," Computers & Education, vol. 103, pp. 1--15, 2016.

Pavel Kiselev, Boris Kiselev, Valeriya Matsuta, Artem Feshchenko, Irina Bogdanovskaya, and Alexandra Kosheleva, "Career guidance based on machine learning: social networks in professional identity construction," Procedia Computer Science, vol. 169, pp. 158--163, 2020.

Pauziah Mohd Arsad, Norlida Buniyamin, and Jamalul-lail Ab Manan, "Neural network model to predict electrical students' academic performance," in 2012 4th International Congress on Engineering Education, Georgetown, Malaysia, IEEE, 2012, pp. 1-- 5.

D. Kabakchieva, "Predicting student performance by using data mining methods for classification," Cybernetics and information technologies, vol. 13, no. 1, pp. 61--72, 2013.

Amal Alhassan, Bassam Zafar, and Ahmed Mueen, "Predict students’ academic performance based on their assessment grades and online activity data," International Journal of Advanced Computer Science and Applications, vol. 11, no. 4, pp. 185--194, 2020.

Amjad Abu Saa, Mostafa Al-Emran, and Khaled Shaalan, "Mining student information system records to predict students’ academic performance," in International conference on advanced machine learning technologies and applications, Springer International Publishing, 2019, pp. 229--239.

Solomia Fedushko, and Taras Ustyianovych, "Predicting Pupil’s Successfulness Factors Using Machine Learning Algorithms and Mathematical Modelling Methods," in Advances in Computer Science for Engineering and Education II, Springer International Publishing, 2020, pp. 625--636.

Shah Hussain, and Muhammad Qasim Khan, "Student-performulator: predicting students’ academic performance at secondary and intermediate level using machine learning," Annals of data science, pp. 1--19, 2021.

Загрузки

Опубликован

2024-08-09

Как цитировать

Маматов N., Иброхимов S., & Самиджонов A. (2024). МЕТОДЫ МОНИТОРИНГА УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ СТУДЕНТОВ С ПОМОЩЬЮ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА: МЕТОДЫ МОНИТОРИНГА УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ СТУДЕНТОВ С ПОМОЩЬЮ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА. Железнодорожный транспорт: актуальные вопросы и инновации, (1), 143–148. извлечено от http://transportjournals.com/index.php/InnoTrans/article/view/82